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This paper deals with the study on a mathematical model consisting of 
mutualistic interactions among two-species with proportional harvesting. 
Harvesting function is introduced to describe the rate of removal of the 
species. The local stability analysis shows that the unique positive 
equilibrium point is asymptotically stable when certain conditions are 
satisfied. Global stability is discussed by constructing Lyapunov function. It 
has been shown that the unique positive equilibrium point is globally 
asymptotically stable. Finally, numerical simulations supporting theoretical 
results are also included. 
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1. Introduction 

*Mutualism is an interaction between two species 
where both species benefit from the interaction 
(Rockwood, 2015). Some common examples of two-
species mutualism include zebra and wildebeest 
(Fay and Greeff, 2006), yucca moths and yucca plants 
(Starr et al., 2015) and damselfish and sea anemone 
(Benz, 2000). In a thorough review of the natural 
history of mutualisms, Janzen (1985) has argued that 
most mutualisms can be classified into four types; 
seed dispersal mutualisms, pollination mutualisms, 
digestive mutualisms and protection mutualisms. 
Some example of each type of mutualisms can be 
seen in Kot (2001). In general, mutualism may be 
facultative or obligate (Morin, 2011). In the case of 
facultative mutualism, each species is able to survive 
in the absence of the other. Zebra and wildebeest, 
damselfish and sea anemones are examples of 
facultative mutualism. A mutualism is obligate when 
one species cannot live without the other species. 
Yucca moths and yucca plants have a reciprocal 
obligate relationship. 

One of the important issues in a mutualism 
system is global stability. Some biologists believe 
that local asymptotically stable equilibrium point is 
globally asymptotically stable in an ecological model 
(Cheng et al., 1981). A general method to establish 
global stability in a mutualism system is by 
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constructing a Lyapunov function. Two different 
forms of Lyapunov functions have been constructed 
by Goh (1979) and Reddy et al. (2011) to show that 
the unique positive equilibrium point is globally 
asymptotically stable in a same basic model of 
mutualism.  

Recently, Georgescu et al. (2016) have analyzed 
the dynamics of three models of mutualism and 
establishing the global stability via the method of 
Lyapunov functional. The authors found that the use 
of higher-order self- limiting terms cures the 
shortcomings of Lotka-Volterra mutualisms, 
preventing unbounded growth and promoting global 
stability.  

In the context of mutualism interaction, some 
studies consider the effect of harvesting and time 
delay. The removal of a number of a species of 
population from its habitat is known as harvesting. 
According to Ouncharoen et al. (2012), harvest 
management is used to control increasing population 
and to meet the public demands for animal damage 
control, recreation or commercial harvesting. A 
delay is a general concept that can represent 
different phenomena such as the finite gestation 
period or maturation period of a species. For 
animals, the delay time may be the time it takes for 
an egg to develop into a fertile adult (Haberman, 
1998). The global stability of the unique positive 
equilibrium point of mutualism model subject to 
proportional harvesting has been studied by León 
(2012). He constructed more than one Lyapunov 
function to prove the global stability of the same 
model. 

The global stability analysis of mutualism model 
with time delay has been conducted by some 
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researchers. Hsu and Ho (2006) obtained the 
conditions for global stability of two-species 
mutualism model with single delay by constructing a 
Lyapunov function. The authors illustrate their 
results by some example. The global stability 
analysis of mutualism models with two delays or 
without delays by constructing a Lyapunov function 
has been studied by León (2015). He found that if all 
the delayed feedback is positive then the stability 
properties are independent of the values of the 
delays. Saito (2002) derived necessary and sufficient 
conditions for the global stability of mutualism 
model with time delays in some specific cases using 
the method of Lyapunov function.  

In this paper, we extend the work done by Goh 
(1979) and Reddy et al. (2011) by constructing a 
suitable Lyapunov function to prove the global 
stability of the unique positive equilibrium point of a 
mutualism model with proportional harvesting and 
illustrate our results by a numerical example. This 
model is different to a model appearing in León 
(2012). In particular, the mathematical analysis is 
simulated using the data for the population of 
wildebeest and zebra as reported in Fay and Greeff 
(2006). 

2. Lyapunov’s second method 

Lyapunov’s second method or direct method uses 
an energy-like function called the Lyapunov function 
to study the behavior of dynamical systems 
analytically (Do and Pan, 2009). This method is 
referred to as a direct method because no knowledge 
of the solution of the system of differential equations 
is required. Lyapunov’s second method enables the 
analysis to be extended beyond a small region near 
the equilibrium point (global analysis). The basic 
idea of this technique for verifying stability is to seek 
an aggregated summarizing function that continually 
decreases towards a minimum as the system 
evolves. The following Definition 1 and Theorem 1 
can be obtained from Boyce and DiPrima (1992). 

 

Definition 1: Suppose that (𝑥0, 𝑦0) is an equilibrium 
point of a given nonlinear system 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦). 

 
A function 𝑉(𝑥, 𝑦) defined on a region Ω of the 

state space and containing (𝑥0, 𝑦0) is a Lyapunov 
function if it satisfies the following three 
requirements: 

 
1. 𝑉(𝑥, 𝑦) is continuous and has continuous first 

partial derivatives. 
2. 𝑉(𝑥, 𝑦) is positive definite. 

3. �̇�(𝑥, 𝑦) =
𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑉

𝜕𝑦

𝑑𝑦

𝑑𝑡
 is negative semi definite. 

 
Theorem 1: If there exists a Lyapunov function, then 
the equilibrium point is stable. If furthermore, the 

function is strictly negative for every point then the 
stability is asymptotic. 

3. Mathematical model 

We consider the mutualism model with 
proportional harvesting as follows  

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 − 𝑏𝑥2 + 𝛼𝑥𝑦 − ℎ𝑥𝑥,  

𝑑𝑦

𝑑𝑡
= 𝑠𝑦 − 𝑒𝑦2 + 𝛽𝑥𝑦 − ℎ𝑦𝑦,                   (1) 

 

where, 𝑏 =
𝑟

𝐾𝑥
 and 𝑒 =

𝑠

𝐾𝑦
. The symbols 𝑥 and 𝑦 

denote the population size of the first species and 
the second species respectively, 𝑟 and 𝑠 are the 
intrinsic growth rates, 𝐾𝑥 and 𝐾𝑦 are the carrying 

capacities, ⍺ and β measure the mutualism effect of 𝑦 
on 𝑥 and 𝑥 on 𝑦 respectively, ℎ𝑥𝑥 and ℎ𝑦𝑦 are 

harvesting terms proportional to the respective 
population size and all the parameters are positive 
constants. Let 𝑟1 = 𝑟 − ℎ𝑥 and 𝑠1 = 𝑠 − ℎ𝑦, so model 

(1) can be written as follow  
 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 − 𝑏𝑥2 + 𝛼𝑥𝑦,  

𝑑𝑦

𝑑𝑡
= 𝑠1𝑦 − 𝑒𝑦2 + 𝛽𝑥𝑦.                    (2) 

 

Under the assumptions 𝑟1 > 0 and 𝑠1 > 0, model 
(2) have four equilibrium points; 𝐸1 = (0,0), 𝐸2 =

(
𝑟1

𝑏
, 0), 𝐸3 = (0,

𝑠1

𝑒
) and 𝐸∗ =

(𝑥∗, 𝑦∗)=(
𝑒𝑟1+𝛼𝑠1

𝑏𝑒−𝛼𝛽
,

𝑏𝑠1+𝛽𝑟1

𝑏𝑒−𝛼𝛽
). 𝐸∗ = (𝑥∗, 𝑦∗) is the unique 

positive equilibrium point of the system (2) if 𝑟1 =
𝑟 − ℎ𝑥 > 0, 𝑠1 = 𝑠 − ℎ𝑦 > 0  and 𝑏𝑒 − 𝛼𝛽 > 0. In this 

case, the range of harvesting level for model (2) are 
0 < ℎ𝑥 < 𝑟 and 0 < ℎ𝑦 < 𝑠. 

4. Local stability 

In this section, the local stability analysis of 
equilibrium points of model (2) is investigated. In 
order to determine the stability of each equilibrium 
point, we need to compute the Jacobian matrix of 
model (2). The sign of the real part of the 
eigenvalues of this matrix evaluated at these 
equilibrium points determines its stability. The 
Jacobian matrix of model (2) takes the form 
 

𝐽 = (
𝑟1 − 2𝑏𝑥 + 𝛼𝑦 𝛼𝑥

𝛽𝑦 𝑠1 − 2𝑒𝑦 + 𝛽𝑥
).  

 

The Jacobian matrix of model (2) at E1 is 
 

𝐽1 = (
𝑟1 0
0 𝑠1

). 

 

The eigenvalues λ1 = r1,  λ2 = s1 of J1 are both 
positive. Thus, the equilibrium point  E1 of model (2) 
is unstable. The Jacobian matrix of the model (2) at 
E2 is 
 

𝐽2 = (
−𝑟1

𝛼𝑟1

𝑏

0
𝑏𝑠1+𝛽𝑟1

𝑏

). 
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The eigenvalues of J2 are λ1 = −r1, λ2
bs1+βr1

b
. Since 

λ1 < 0 and λ2 > 0, the equilibrium point E2 of model 
(2) is a saddle point. The Jacobian matrix of model 
(2) at E3 is 
 

𝐽3 = (

𝑒𝑟1+𝛼𝑠1

𝑒
0

𝛽𝑠1

𝑒
−𝑠1

). 

 

The eigenvalues of J3 are λ1 =
er1+αs1

e
, λ2 = −s1. 

Since λ1 > 0 and λ2 < 0, the equilibrium point E3 of 
model (2) is a saddle point. The Jacobian matrix of 
model (2) at  E∗ is 
 

𝐽∗ = (
−𝑏𝑥∗ 𝛼𝑥∗

𝛽𝑦∗ −𝑒𝑦∗),  

 
and we have the characteristic equation 
 
𝜆2 + (𝑏𝑥∗ + 𝑒𝑦∗)𝜆 + (𝑏𝑒𝑥∗𝑦∗ − 𝛼𝛽𝑥∗𝑦∗).   
 
This has the roots 
 

𝜆1,2 =
−(𝑏𝑥∗+𝑒𝑦∗)

2
±

√(𝑏𝑥∗+𝑒𝑦∗)2−4(𝑏𝑒𝑥∗𝑦∗−𝛼𝛽𝑥∗𝑦∗)

2
.  

 
Under the condition be − αβ > 0, then (bx∗ +
ey∗)2 − 4(bex∗y∗ − αβx∗y∗) > 0 and (be −
αβ)x∗y∗ > 0. Thus, both eigenvalues have negative 
real roots. Since λ1 < 0 and λ2 < 0, the unique 
positive equilibrium point E∗ of model (2) is locally 
asymptotically stable. 

5. Global stability 

The intention in this section is to investigate the 
global stability of the unique positive equilibrium 
point 𝐸∗ = (𝑥∗, 𝑦∗) in model (2) by constructing a 
suitable Lyapunov function when the conditions 𝑟1 =
𝑟 − ℎ𝑥 > 0,  𝑠1 = 𝑠 − ℎ𝑦 > 0 and 𝑏𝑒 − 𝛼𝛽 > 0 are 

satisfied. In order to prove the global stability of the 
equilibrium point 𝐸∗ = (𝑥∗, 𝑦∗) of model (2), we 
analyze the associated linearization model with 
perturbation 𝑢 and 𝑣. Let 𝑢 = 𝑥 − 𝑥∗ and 𝑣 = 𝑦 − 𝑦∗ 
and substitute into model (2) to yield 

 
𝑑𝑢

𝑑𝑡
= 𝑟1(𝑢 + 𝑥∗) − 𝑏(𝑢 + 𝑥∗)2 + 𝛼(𝑢 + 𝑥∗)(𝑣 + 𝑦∗),  

𝑑𝑣

𝑑𝑡
= 𝑠1(𝑣 + 𝑦∗) − 𝑒(𝑣 + 𝑦∗)2 + 𝛽(𝑢 + 𝑥∗)(𝑣 + 𝑦∗),  

 
or 

 
𝑑𝑢

𝑑𝑡
= 𝑟1𝑢 + 𝑟1𝑥∗ − 𝑏𝑢2 − 2𝑏𝑥∗𝑢 − 𝑏(𝑥∗)2 + 𝛼𝑢𝑣 + 𝛼𝑦∗𝑢 +

𝛼𝑥∗𝑣 + 𝛼𝑥∗𝑦∗,  
𝑑𝑣

𝑑𝑡
= 𝑠1𝑣 + 𝑠1𝑦∗ − 𝑒𝑣2 − 2𝑒𝑦∗𝑣 − 𝑒(𝑦∗)2 + 𝛽𝑢𝑣 + 𝛽𝑦∗𝑢 +

𝛽𝑥∗𝑣 + 𝛽𝑥∗𝑦∗.  

 
After simplifying and neglecting the product terms, 
we obtain the linearized model  

  
𝑑𝑢

𝑑𝑡
= −𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣,  

𝑑𝑣

𝑑𝑡
= −𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢.                        (3) 

The corresponding characteristic equation is 
obtained from 

 

|
−𝑏𝑥∗ − 𝜆 𝛼𝑥∗

𝛽𝑦∗ −𝑒𝑦∗ − 𝜆
| = 0,  

 
which is given by  

 
𝜆2 + 𝑎00 + 𝑎11𝜆 = 0,                     (4) 

 
where 

 
𝑎00 = (𝑏𝑒 − 𝛼𝛽)𝑥∗𝑦∗ > 0,   
𝑎11 = 𝑏𝑥∗ + 𝑒𝑦∗ > 0.  

 
We define a function by  

 
𝑉(𝑢, 𝑣) = 𝐴𝑢2 + 𝐵𝑢𝑣 + 𝐶𝑣2,                    (5) 

 
where (Eqs. 6-9) 

 

𝐴 =
(𝛽𝑦∗)2+(𝑒𝑦∗)2+(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗

2𝐷
,                    (6) 

𝐵 =
𝑏𝛽𝑥∗𝑦∗+𝑒𝛼𝑥∗𝑦∗

𝐷
,                      (7) 

𝐶 =
(𝑏𝑥∗)2+(𝛼𝑥∗)2+(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗

2𝐷
  and                    (8) 

𝐷 = 𝑎00𝑎11 = (𝑏𝑥∗ + 𝑒𝑦∗)(𝑏𝑒 − 𝛼𝛽)𝑥∗𝑦∗.                     (9) 
 

This function is certainly continuous with 
continuous first partial derivatives. Next, we want to 
check whether the function 𝑉(𝑢, 𝑣) is positive or 
negative definite. Function 𝑉(𝑢, 𝑣) is positive definite 
if, and only if 𝐴 > 0 and 4𝐴𝐶 − 𝐵2 > 0, and is 
negative definite if, and only if 𝐴 < 0 and 4𝐴𝐶 −
𝐵2 > 0. From (6), it is clear that 𝐴 > 0 since the 
condition for the existence of positive equilibrium 
point is 𝑏𝑒 − 𝛼𝛽 > 0. Then,  

 

4𝐴𝐶 − 𝐵2 = 4 (
(𝛽𝑦∗)2+(𝑒𝑦∗)2+(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗

2(𝑏𝑥∗+𝑒𝑦∗)(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗
) ×

(
(𝑏𝑥∗)2+(𝛼𝑥∗)2+(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗

2(𝑏𝑥∗+𝑒𝑦∗)(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗
) − (

𝑏𝛽𝑥∗𝑦∗+𝑒𝛼𝑥∗𝑦∗

(𝑏𝑥∗+𝑒𝑦∗)(𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗
)

2
=

2𝑥∗𝑦∗(𝑏𝑒−𝛼𝛽)+𝑥2(𝑏2+𝛼2)+𝑦2(𝑒2+𝛼𝛽2)

(𝑏𝑥∗+𝑒𝑦∗)2((𝑏𝑒−𝛼𝛽)𝑥∗𝑦∗)
2   

 

Since 𝑏𝑒 − 𝛼𝛽 > 0, then 4𝐴𝐶 − 𝐵2 > 0. 
Therefore, the function 𝑉(𝑢, 𝑣) is positive definite. 
The chosen function 𝑉(𝑢, 𝑣) satisfies the first two 
requirements of a Lyapunov function. 

For the final requirement that the time derivative 
of 𝑉(𝑢, 𝑣) must be negative definite, by using the 
linearized system (3), we have  

 
𝜕𝑉

𝜕𝑢

𝑑𝑢

𝑑𝑡
+

𝜕𝑉

𝜕𝑣

𝑑𝑣

𝑑𝑡
= (2𝐴𝑢 + 𝐵𝑣)(−𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣) +

(𝐵𝑢 + 2𝐶𝑣)(−𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢).                       (10) 

 
Substituting the values of 𝐴, 𝐵, 𝐶 and 𝐷 from (6), 

(7), (8) and (9) in (10) we get  
 

𝜕𝑉

𝜕𝑢

𝑑𝑢

𝑑𝑡
+

𝜕𝑉

𝜕𝑣

𝑑𝑣

𝑑𝑡
=

(𝑏𝑒−𝛼𝛽)(𝑏𝑥∗+𝑒𝑦∗)(−𝑢2−𝑣2)

(𝑏𝑥∗+𝑒𝑦∗)(𝑏𝑒−𝛼𝛽)
= −(𝑢2 + 𝑣2),  (11) 

 
which is clearly negative definite. So 𝑉(𝑢, 𝑣) is a 
Lyapunov function for the linearized system (3). 

Next, we proceed to prove that 𝑉(𝑢, 𝑣) is also a 
Lyapunov function for the nonlinear system (2). 
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Let 𝐹1 and 𝐹2 be two functions of 𝑥 and 𝑦 defined 
by 

 

𝐹1(𝑥, 𝑦) = 𝑟1𝑥 − 𝑏𝑥2 + 𝛼𝑥𝑦,  
𝐹2(𝑥, 𝑦) = 𝑠1𝑦 − 𝑒𝑦2 + 𝛽𝑥𝑦.  

 

We have to show that 
𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 is negative 

definite. By letting 𝑢 = 𝑥 − 𝑥∗ and  𝑣 = 𝑦 − 𝑦∗ in (2), 
we have 

 
𝑑𝑢

𝑑𝑡
= 𝑟1𝑢 + 𝑟1𝑥∗ − 𝑏𝑢2 − 2𝑏𝑥∗𝑢 − 𝑏(𝑥∗)2 + 𝛼𝑢𝑣 + 𝛼𝑦∗𝑢 +

𝛼𝑥∗𝑣 + 𝛼𝑥∗𝑦∗.  
 

After simplifying, we have  
 

𝑑𝑢

𝑑𝑡
= (𝑟1𝑥∗ − 𝑏(𝑥∗)2 + 𝛼𝑥∗𝑦∗) + (𝑟1 − 𝑏𝑥∗ + 𝛼𝑦∗)𝑢 −

𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣 − 𝑏𝑢2 + 𝛼𝑢𝑣.  
 

The first and second terms of 
𝑑𝑢

𝑑𝑡
 are equal to zero 

at the equilibrium point (𝑥∗, 𝑦∗). Thus, we have 
 

𝑑𝑢

𝑑𝑡
= −𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣 − 𝑏𝑢2 + 𝛼𝑢𝑣 = −𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣 +

𝑓1(𝑢, 𝑣) = 𝐹1(𝑢, 𝑣),                                            (12) 
 

where 
 

𝑓1(𝑢, 𝑣) = −𝑏𝑢2 + 𝛼𝑢𝑣.  
 

Similiarly, we obtain 
 

𝑑𝑣

𝑑𝑡
= 𝑠1𝑣 + 𝑠1𝑦∗ − 𝑒𝑣2 − 2𝑒𝑦∗𝑣 − 𝑒(𝑦∗)2 + 𝛽𝑢𝑣 + 𝛽𝑦∗𝑢 +

𝛽𝑥∗𝑣 + 𝛽𝑥∗𝑦∗.  
 

After simplifying, we have 
 

𝑑𝑣

𝑑𝑡
= (𝑠1𝑦∗ − 𝑒(𝑦∗)2 + 𝛽𝑥∗𝑦∗) + (𝑠1 − 𝑒𝑦∗ + 𝛽𝑥∗)𝑣 −

𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢 − 𝑒𝑣2 + 𝛽𝑢𝑣.  
 

The first and second terms of 
𝑑𝑣

𝑑𝑡
 are equal to zero 

at the equilibrium point (𝑥∗, 𝑦∗). Thus, we have 
 

𝑑𝑣

𝑑𝑡
= −𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢 − 𝑒𝑣2 + 𝛽𝑢𝑣 = −𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢 +

𝑓2(𝑢, 𝑣) = 𝐹2(𝑢, 𝑣),                     (13) 
 

where 
 

𝑓2(𝑢, 𝑣) = −𝑒𝑣2 + 𝛽𝑢𝑣.  
 

From (5), we have 
 

𝜕𝑉

𝜕𝑢
= 2𝐴𝑢 + 𝐵𝑣, 

 

and 
 

𝜕𝑉

𝜕𝑣
= 𝐵𝑢 + 2𝐶𝑣. 

 

Hence, 
 
𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 = (2𝐴𝑢 + 𝐵𝑣)(−𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣 + 𝑓1(𝑢, 𝑣)) +

(𝐵𝑢 + 2𝐶𝑣)(−𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢 + 𝑓2(𝑢, 𝑣)) = (2𝐴𝑢 +

𝐵𝑣)(−𝑏𝑥∗𝑢 + 𝛼𝑥∗𝑣) + (𝐵𝑢 + 2𝐶𝑣)(−𝑒𝑦∗𝑣 + 𝛽𝑦∗𝑢) +
(2𝐴𝑢 + 𝐵𝑣)𝑓1(𝑢, 𝑣) + (𝐵𝑢 + 2𝐶𝑣)𝑓2(𝑢, 𝑣).   

From (10) and (11), we obtain 
 

𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 = −(𝑢2 + 𝑣2) + (2𝐴𝑢 + 𝐵𝑣)𝑓1(𝑢, 𝑣) +

(𝐵𝑢 + 2𝐶𝑣)𝑓2(𝑢, 𝑣).                                                (14) 

 
Introducing polar co-ordinates 𝑢 = 𝑅 cos 𝜃, 𝑣 =

𝑅 sin 𝜃, (14) can be written as 
 

𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 = −𝑅2 + 𝑅[(2𝐴 cos 𝜃 + 𝐵 sin 𝜃)𝑓1(𝑢, 𝑣)] +

𝑅[𝐵(cos 𝜃 + 2𝐶 sin 𝜃)𝑓2(𝑢, 𝑣)].  
 
Let us denote the largest of the numbers |2𝐴|, |𝐵| 

and |2𝐶| by 𝐾. Our assumptions imply that  

|𝑓1(𝑢, 𝑣)| <
𝑅

8𝐾
 and |𝑓2(𝑢, 𝑣)| <

𝑅

8𝐾
 for all sufficiently 

small 𝑅 > 0, so that 
 

𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 < −𝑅2 + 𝑅 ((2𝐴 cos 𝜃 + 𝐵 sin 𝜃)

𝑅

8𝐾
) +

𝑅 (𝐵(cos 𝜃 + 2𝐶 sin 𝜃)
𝑅

8𝐾
)  

< −𝑅2 +
𝑅2

8𝐾
((|2𝐴| + |𝐵|) cos 𝜃 + (|𝐵| + |2𝐶|) sin 𝜃)  

< −𝑅2 +
𝑅2

8𝐾
(2𝐾 cos 𝜃 + 2𝐾 sin 𝜃)  

< −𝑅2 +
𝑅2

8𝐾
(4𝐾).  

 

This implies 
 

𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 < −𝑅2 +

4𝐾𝑅2

8𝐾
= −

𝑅2

2
< 0.                              (15) 

 
Thus, 𝑉(𝑢, 𝑣) is a positive definite function with 

the property that 
𝜕𝑉

𝜕𝑢
𝐹1 +

𝜕𝑉

𝜕𝑣
𝐹2 is negative definite. 

So, 𝑉(𝑢, 𝑣) is a Lyapunov function for the nonlinear 
system (2). Therefore, the unique positive 
equilibrium point 𝐸∗ = (𝑥∗, 𝑦∗) of model (2) is 
globally asymptotically stable. 

6. Numerical simulation 

Now, we carry out numerical simulation to 
investigate the dynamic behavior of the system (1) 
about the equilibrium point 𝐸∗ = (𝑥∗, 𝑦∗). Consider 
the following system of wildebeest and zebra 
without the presence of lion as proposed in Fay and 
Greeff (2006) by incorporating proportional 
harvesting to illustrate the theory discussed 
previously 

 
𝑑𝑥

𝑑𝑡
= 0.405𝑥 − 0.03375𝑥2 + 0.015𝑥𝑦 − 0.2𝑥,  

𝑑𝑦

𝑑𝑡
= 0.34𝑦 − 0.02833𝑦2 + 0.020𝑥𝑦 − 0.1𝑦,                      (16) 

 
where 𝑥 and 𝑦 represent the population size of 
wildebeest and zebra respectively (both measured in 
thousands). Harvesting refers to the process of 
cropping the species, i.e. removing the species to a 
new location in order to avoid overcrowding. 

Comparing model (16) with model (1), we have 
𝑟 = 0.405, 𝑠 = 0.34, 𝑏 = 0.03375, 𝑒 = 0.02833, 𝛼 =
0.015 and 𝛽 = 0.020. The harvesting rate ℎ𝑥 = 0.2 
and ℎ𝑦 = 0.1 are chosen to satisfied the conditions 

0 < ℎ𝑥 < 𝑟 and 0 < ℎ𝑦 < 𝑠. 
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Let 𝑟1 = 𝑟 − ℎ𝑥 and 𝑠1 = 𝑠 − ℎ𝑦, so that model 

(16) can be written as follow 
 

𝑑𝑥

𝑑𝑡
= 0.205𝑥 − 0.03375𝑥2 + 0.015𝑥𝑦,  

𝑑𝑦

𝑑𝑡
= 0.24𝑦 − 0.02833𝑦2 + 0.020𝑥𝑦.                             (17) 

 
Comparing model (17) with model (2), we have 

𝑟1 = 0.205, 𝑏 = 0.03375, 𝛼 = 0.015, 𝑠1 = 0.24, 𝑒 =
0.02833 and 𝛽 = 0.020. With these parameters, the 
conditions 𝑏𝑒 − 𝛼𝛽 > 0, 𝑟1 = 𝑟 − ℎ𝑥 > 0 and 𝑠1 =
𝑠 − ℎ𝑦 > 0 for the existence of the unique positive 

equilibrium point are satisfied. The unique positive 
equilibrium point is 𝐸∗ = (14.3365,18.5905). The 
eigenvalues associated with this equilibrium point 
are −0.2217 and −0.7889. This means that 𝐸∗ is 
locally asymptotically stable.  

We would like to determine the stability of the 
model (16) where the equilibrium point is (𝑥∗, 𝑦∗) =
(14.3365,18.5905). In Fig. 1, the equilibrium point 
(14.3365,18.5905) is a stable sink. This means that 
solution trajectories tend to the equilibrium point 
without oscillation. The population dynamics of 
wildebeest and zebra can be analyzed separately 
with respect to time. From Fig. 2 and Fig. 3, we can 
see that both wildebeest and zebra populations 
converge in finite time to their equilibrium values 
𝑥∗ = 14.3365 and 𝑦∗ = 18.5905 from initial 
population 𝑥(0) = 14 and 𝑦(0) = 17. As shown in 
Figs. 1, 2, and 3, the unique positive equilibrium 
point 𝐸∗ = (14.3365,18.5905) is globally 
asymptotically stable and all the two species persist. 

 

 
Fig. 1: Phase portrait of (𝑥(𝑡), 𝑦(𝑡)) 

7. Conclusion 

This study considered a two-species mutualism 
model with proportional harvesting. A suitable 
Lyapunov function was successfully constructed in 
order to prove the global stability of the unique 
positive equilibrium point when the conditions 𝑟1 =
𝑟 − ℎ𝑥 > 0, 𝑠1 = 𝑠 − ℎ𝑦 > 0 and 𝑏𝑒 − 𝛼𝛽 > 0 are 

satisfied. From the numerical analysis, it is observed 
that both the species persist. As seen from Fig. 1-Fig. 
3, both the wildebeest and zebra populations tend 
toward the equilibrium point (14.3365,18.5905).  

 
Fig. 2: Trajectory of 𝑥(𝑡) at ℎ𝑥 = 0.2 and 𝑥(0) = 14 

 

 
Fig. 3: Trajectory of 𝑦(𝑡) at ℎ𝑦 = 0.1 and 𝑦(0) = 17 

 
There is still a tremendous amount of work to be 

done in this area. For example, it is interesting to 
prove the global stability of two or more species 
mutualism models having both delay and harvesting 
function in a real life situation. Previous researchers 
have studied models with either delay (Hsu and Ho, 
2006; León, 2015; Saito, 2002) or harvesting (León, 
2012) but as far as we know, no research has been 
done for models having both components. 

The literature on the stability of the mutualism 
model is not as much as the literature concerning the 
stability of the predator-prey and competition 
models. Therefore, the findings of this study may 
contribute to a better understanding of the 
population dynamics of mutualism model 
particularly in the use of Lyapunov function to 
determine the global stability when the model 
incorporates harvesting function. Continuous effort 
in this area can add to the body of knowledge and 
benefits the society especially regards to the 
conservation of species within the ecosystem. 
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